Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
1.
Ecotoxicol Environ Saf ; 275: 116264, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564869

RESUMO

Triocresyl phosphate (TOCP) was commonly used as flame retardant, plasticizer, lubricant, and jet fuel additive. Studies have shown adverse effects of TOCP on the reproductive system. However, the potential harm brought by TOCP, especially to mammalian female reproductive cells, remains a mystery. In this study, we employed an in vitro model for the first time to investigate the effects of TOCP on the maturation process of mouse oocytes. TOCP exposure hampered the meiotic division process, as evidenced by a reduction in the extrusion of the first polar body from oocytes. Subsequent research revealed the disruption of the oocyte cell cytoskeleton induced by TOCP, resulting in abnormalities in spindle organization, chromosome alignment, and actin filament distribution. This disturbance further extended to the rearrangement of organelles within oocytes, particularly affecting the mitochondria. Importantly, after TOCP treatment, mitochondrial function in oocytes was impaired, leading to oxidative stress, DNA damage, cell apoptosis, and subsequent changes of epigenetic modifications. Supplementation with nicotinamide mononucleotide (NMN) alleviated the harmful effects of TOCP. NMN exerted its mitigating effects through two fundamental mechanisms. On one hand, NMN conferred stability to the cell cytoskeleton, thereby supporting nuclear maturation. On the other hand, NMN enhanced mitochondrial function within oocytes, reducing the excess reactive oxygen species (ROS), restoring meiotic division abnormalities caused by TOCP, preventing oocyte DNA damage, and suppressing epigenetic changes. These findings not only enhance our understanding of the molecular basis of TOCP induced oocyte damage but also offer a promising avenue for the potential application of NMN in optimizing reproductive treatment strategies.


Assuntos
Mononucleotídeo de Nicotinamida , Fosfatos , Tritolil Fosfatos , Feminino , Camundongos , Animais , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Fosfatos/metabolismo , Oócitos , Citoesqueleto , Mitocôndrias , Espécies Reativas de Oxigênio/metabolismo , Mamíferos
2.
Food Funct ; 15(6): 3199-3213, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38445897

RESUMO

Ageing is defined as the degeneration of physiological functions in numerous tissues and organs of an organism, which occurs with age. As we age, the gut undergoes a series of changes and weaknesses that may contribute to overall ageing. Emerging evidence suggests that ß-nicotinamide mononucleotide (NMN) plays a role in regulating intestinal function, but there is still a lack of literature on its role in maintaining the colon health of ageing mice. In our research, Zmpste24-/- mice proved that NMN prolonged their life span and delayed senescence. This study was designed to investigate the effects of long-term intervention on regulating colon function in ageing mice. Our results indicated that NMN improved the pathology of intestinal epithelial cells and intestinal permeability by upregulating the expression of intestinal tight junction proteins and the number of goblet cells, increasing the release of anti-inflammatory factors, and increasing beneficial intestinal bacteria. NMN increased the expression of the proteins SIRT1, NMNAT2, and NMNAT3 and decreased the expression of the protein P53. It also regulated the activity of ISCs by increasing Wnt/ß-catenin and Lgr5. Our findings also revealed that NMN caused a significant increase in the relative abundance of Akkermansia muciniphila and Bifidobacterium pseudolongum and notable differences in metabolic pathways related to choline metabolism in cancer. In summary, NMN supplementation can delay frailty in old age, aid healthy ageing, and delay gut ageing.


Assuntos
Longevidade , Mononucleotídeo de Nicotinamida , Camundongos , Animais , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Envelhecimento , Suplementos Nutricionais , Colo/metabolismo
3.
Commun Biol ; 7(1): 255, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429435

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT) plays an important role in the biosynthesis of nicotinamide adenine dinucleotide (NAD+) via the nicotinamide (NAM) salvage pathway. While the structural biochemistry of eukaryote NAMPT has been well studied, the catalysis mechanism of prokaryote NAMPT at the molecular level remains largely unclear. Here, we demonstrated the NAMPT-mediated salvage pathway is functional in the Gram-negative phytopathogenic bacterium Xanthomonas campestris pv. campestris (Xcc) for the synthesis of NAD+, and the enzyme activity of NAMPT in this bacterium is significantly higher than that of human NAMPT in vitro. Our structural analyses of Xcc NAMPT, both in isolation and in complex with either the substrate NAM or the product nicotinamide mononucleotide (NMN), uncovered significant details of substrate recognition. Specifically, we revealed the presence of a NAM binding tunnel that connects the active site, and this tunnel is essential for both catalysis and inhibitor binding. We further demonstrated that NAM binding in the tunnel has a positive cooperative effect with NAM binding in the catalytic site. Additionally, we discovered that phosphorylation of the His residue at position 229 enhances the substrate binding affinity of Xcc NAMPT and is important for its catalytic activity. This work reveals the importance of NAMPT in bacterial NAD+ synthesis and provides insights into the substrate recognition and the catalytic mechanism of bacterial type II phosphoribosyltransferases.


Assuntos
Niacinamida , Xanthomonas campestris , Humanos , Niacinamida/metabolismo , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Xanthomonas campestris/metabolismo , Nicotinamida Fosforribosiltransferase/química , Nicotinamida Fosforribosiltransferase/metabolismo , Fosforilação
4.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473844

RESUMO

Nicotinamide mononucleotide (NMN) has emerged as a promising therapeutic intervention for age-related disorders, including type 2 diabetes. In this study, we confirmed the previously observed effects of NMN treatment on glucose uptake and investigated its underlying mechanisms in various tissues and cell lines. Through the most comprehensive proteomic analysis to date, we discovered a series of novel organ-specific effects responsible for glucose uptake as measured by the IPGTT: adipose tissue growing (suggested by increased protein synthesis and degradation and mTOR proliferation signaling upregulation). Notably, we observed the upregulation of thermogenic UCP1, promoting enhanced glucose conversion to heat in intermuscular adipose tissue while showing a surprising repressive effect on mitochondrial biogenesis in muscle and the brain. Additionally, liver and muscle cells displayed a unique response, characterized by spliceosome downregulation and concurrent upregulation of chaperones, proteasomes, and ribosomes, leading to mildly impaired and energy-inefficient protein synthesis machinery. Furthermore, our findings revealed remarkable metabolic rewiring in the brain. This involved increased production of ketone bodies, downregulation of mitochondrial OXPHOS and TCA cycle components, as well as the induction of well-known fasting-associated effects. Collectively, our data elucidate the multifaceted nature of NMN action, highlighting its organ-specific effects and their role in improving glucose uptake. These findings deepen our understanding of NMN's therapeutic potential and pave the way for novel strategies in managing metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Mononucleotídeo de Nicotinamida , Humanos , Mononucleotídeo de Nicotinamida/metabolismo , Biogênese de Organelas , Proteômica , Tecido Adiposo/metabolismo , Glucose , NAD/metabolismo
5.
Biotechnol J ; 19(2): e2300748, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403401

RESUMO

Enzymatic synthesis of ß-nicotinamide mononucleotide (NMN) from D-ribose has garnered widespread attention due to its cheap material, the use of mild reaction conditions, and the ability to produce highly pure products with the desired optical properties. However, the overall NMN yield of this method is impeded by the low activity of rate-limiting enzymes. The ribose-phosphate diphosphokinase (PRS) and nicotinamide phosphoribosyltransferase (NAMPT), that control the rate of the reaction, were engineered to improve the reaction efficacy. The actives of mutants PRS-H150Q and NAMPT-Y15S were 334% and 57% higher than that of their corresponding wild-type enzymes, respectively. Furthermore, by adding pyrophosphatase, the byproduct pyrophosphate which can inhibit the activity of NAMPT was degraded, leading to a 6.72% increase in NMN yield. Following with reaction-process reinforcement, a high yield of 8.10 g L-1 NMN was obtained after 3 h of reaction, which was 56.86-fold higher than that of the stepwise reaction synthesis (0.14 g L-1 ), indicating that the in vitro enzymatic synthesis of NMN from D-ribose and niacinamide is an economical and feasible route.


Assuntos
Mononucleotídeo de Nicotinamida , Ribose , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Niacinamida/metabolismo , Engenharia de Proteínas , NAD/metabolismo
6.
Int J Biol Macromol ; 261(Pt 2): 129905, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311136

RESUMO

Efficient bone reconstruction, especially of the critical size after bone damage, remains a challenge in the clinic. Bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation is considered as a promising strategy for bone repair. Nicotinamide adenine dinucleotide (NAD+) regulating BMSC fate and cellular function enhance osteogenesis, but is hardly delivered and lack of targeting. Herein, a novel and biocompatible scaffold was fabricated to locally deliver a precursor of NAD+, nicotinamide mononucleotide (NMN) to the bone defect site, and its bone repair capability and healing mechanism were clarified. NMN-based hyaluronic acid methacryloyl hybrid hydrogel scaffold (denoted as NMN/HAMA) was prepared via photopolymerization. In vitro RT-qPCR analysis, western blotting, Elisa and alizarin red S staining assays demonstrated that the NMN/HAMA hybrid hydrogel regulated BMSCs cellular function in favour of osteogenic differentiation and mineralization by upregulating the mRNA and proteins expression of the osteogenic genes type I pro-collagen (Col-1), bone morphogenic protein 4 (BMP4), and runt-related transcription factor 2 (RUNX2) via the SIRT1 pathway. Implantation of such hybrid hydrogels significantly enhanced bone regeneration in rodent critical calvarial defect models. Furthermore, restoration of the bone defect with NMN administration was inhibited in Prx1 Cre+; SIRT1flox/flox mice, confirming that the NMN/HAMA hybrid hydrogel scaffold promoted bone regeneration via the SIRT1-RUNX2 pathway. These results imply that NMN-based scaffold may be a promising and economic strategy for the treatment of bone defects.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Camundongos , Animais , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Ácido Hialurônico/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Regeneração Óssea , Diferenciação Celular
7.
Adipocyte ; 13(1): 2313297, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38316756

RESUMO

Nicotinamide Adenine Dinucleotide (NAD) is an endogenous substance in redox reactions and regulates various functions in metabolism. NAD and its precursors are known for their anti-ageing and anti-obesity properties and are mainly active in the liver and muscle. Boosting NAD+ through supplementation with the precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), enhances insulin sensitivity and circadian rhythm in the liver, and improves mitochondrial function in the muscle. Recent evidence has revealed that the adipose tissue could be another direct target of NAD supplementation by attenuating inflammation and fat accumulation. Moreover, murine studies with genetically modified models demonstrated that nicotinamide phosphoribosyltransferase (NAMPT), a NAD regulatory enzyme that synthesizes NMN, played a critical role in lipogenesis and lipolysis in an adipocyte-specific manner. The tissue-specific effects of NAD+ metabolic pathways indicate a potential of the NAD precursors to control metabolic stress particularly via focusing on adipose tissue. Therefore, this narrative review raises an importance of NAD metabolism in white adipose tissue (WAT) through a variety of studies using different mouse models.


Assuntos
NAD , Mononucleotídeo de Nicotinamida , Camundongos , Animais , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Tecido Adiposo/metabolismo , Fígado/metabolismo , Obesidade
8.
J Agric Food Chem ; 72(7): 3302-3313, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38330904

RESUMO

Nicotinamide mononucleotide (NMN) has garnered substantial interest as a functional food product. Industrial NMN production relies on chemical methods, facing challenges in separation, purification, and regulatory complexities, leading to elevated prices. In contrast, NMN biosynthesis through fermentation or enzyme catalysis offers notable benefits like eco-friendliness, recyclability, and efficiency, positioning it as a primary avenue for future NMN synthesis. Enzymatic NMN synthesis encompasses the nicotinamide-initial route and nicotinamide ribose-initial routes. Key among these is nicotinamide riboside kinase (NRK), pivotal in the latter route. The NRK-mediated biosynthesis is emerging as a prominent trend due to its streamlined route, simplicity, and precise specificity. The essential aspect is to obtain an engineered NRK that exhibits elevated activity and robust stability. This review comprehensively assesses diverse NMN synthesis methods, offering valuable insights into efficient, sustainable, and economical production routes. It spotlights the emerging NRK-mediated biosynthesis pathway and its significance. The establishment of an adenosine triphosphate (ATP) regeneration system plays a pivotal role in enhancing NMN synthesis efficiency through NRK-catalyzed routes. The review aims to be a reference for researchers developing green and sustainable NMN synthesis, as well as those optimizing NMN production.


Assuntos
Trifosfato de Adenosina , Mononucleotídeo de Nicotinamida , Mononucleotídeo de Nicotinamida/metabolismo , Trifosfato de Adenosina/metabolismo , Biocatálise , NAD/metabolismo
9.
Biochem Biophys Res Commun ; 702: 149590, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38340651

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is the fundamental molecule that performs numerous biological reactions and is crucial for maintaining cellular homeostasis. Studies have found that NAD+ decreases with age in certain tissues, and age-related NAD+ depletion affects physiological functions and contributes to various aging-related diseases. Supplementation of NAD+ precursor significantly elevates NAD+ levels in murine tissues, effectively mitigates metabolic syndrome, enhances cardiovascular health, protects against neurodegeneration, and boosts muscular strength. Despite the versatile therapeutic functions of NAD+ in animal studies, the efficacy of NAD+ precursors in clinical studies have been limited compared with that in the pre-clinical study. Clinical studies have demonstrated that NAD+ precursor treatment efficiently increases NAD+ levels in various tissues, though their clinical proficiency is insufficient to ameliorate the diseases. However, the latest studies regarding NAD+ precursors and their metabolism highlight the significant role of gut microbiota. The studies found that orally administered NAD+ intermediates interact with the gut microbiome. These findings provide compelling evidence for future trials to further explore the involvement of gut microbiota in NAD+ metabolism. Also, the reduced form of NAD+ precursor shows their potential to raise NAD+, though preclinical studies have yet to discover their efficacy. This review sheds light on NAD+ therapeutic efficiency in preclinical and clinical studies and the effect of the gut microbiota on NAD+ metabolism.


Assuntos
Suplementos Nutricionais , NAD , Camundongos , Animais , NAD/metabolismo , Envelhecimento/metabolismo , Niacinamida/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo
10.
Endocr J ; 71(2): 153-169, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38191197

RESUMO

Obesity and aging are major risk factors for several life-threatening diseases. Accumulating evidence from both rodents and humans suggests that the levels of nicotinamide adenine dinucleotide (NAD+), a regulator of many biological processes, declines in multiple organs and tissues with aging and obesity. Administration of an NAD+ intermediate, nicotinamide mononucleotide (NMN), replenishes intracellular NAD+ levels and mitigates aging- and obesity-associated derangements in animal models. In this human clinical study, we aimed to investigate the safety and effects of 8-week oral administration of NMN on biochemical, metabolic, ophthalmologic, and sleep quality parameters as well as on chronological alterations in NAD+ content in peripheral tissues. An 8-week, single-center, single-arm, open-label clinical trial was conducted. Eleven healthy, middle-aged Japanese men received two 125-mg NMN capsules once daily before breakfast. The 8-week NMN supplementation regimen was well-tolerated; NAD+ levels in peripheral blood mononuclear cells increased over the course of NMN administration. In participants with insulin oversecretion after oral glucose loading, NMN modestly attenuated postprandial hyperinsulinemia, a risk factor for coronary artery disease (n = 3). In conclusion, NMN overall safely and effectively boosted NAD+ biosynthesis in healthy, middle-aged Japanese men, showing its potential for alleviating postprandial hyperinsulinemia.


Assuntos
Hiperinsulinismo , NAD , Masculino , Pessoa de Meia-Idade , Animais , Humanos , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Leucócitos Mononucleares/metabolismo , Japão , Obesidade , Sono , Suplementos Nutricionais
11.
Food Res Int ; 177: 113779, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225109

RESUMO

Nicotinamide Mononucleotide (NMN) is a derivative of vitamin B3, which plays a significant role in a plethora of metabolic reactions in the human body and is intricately associated with both immunity and metabolism. Nonetheless, in the intestine metabolic pathway of NMN and the relationship between NMN, gut microbiota, and SCFAs remain hitherto obscure. This study examined the digestion of NMN in simulated saliva, gastric, and small intestine environments, as well as exploring the interaction between NMN and human gut microbiota utilizing an in vitro fermentation model. NMN was progressively degraded into nicotinamide ribose (NR), nicotinamide (NAM), and ribose, with niacinate (NA) constituting the ultimate degradation product due to hydrolysis and metabolism by microbiota. NMN was ingested by human intestinal microbiota with a slower fermentation rate. As a result of NMN ingestion by human gut bacteria,the concentrations of propionate and butyrate increased by 88% and 23%, respectively, compared to the blank control group, the proliferation of beneficial gut bacteria (Bifidobacterium, Phascolarctobacterium, Faecalibacteriun, and Alistipes) significantly increased, while the proliferation of some harmful bacteria (Sutterella, Desulfovibrio and Pseudomonas) drastically declined. These findings illustrated the metabolic processes of NMN in the intestine, elaborating the relationship between NMN, SCFAs and gut microbiota. NMN might be a potential prebiotic to improve intestinal health.


Assuntos
Microbioma Gastrointestinal , Humanos , Fermentação , Mononucleotídeo de Nicotinamida/metabolismo , Saliva/metabolismo , Digestão
12.
Int Immunopharmacol ; 127: 111328, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38064810

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is an essential element in cellular metabolism that regulates fundamental biological processes. Growing evidence suggests that a decline in NAD+ is a common pathological factor in various diseases and aging. However, its role in airway epithelial barrier function in response to asthma remains underexplored. The current study aims to explore the efficacy of restoring cellular NAD+ concentration through supplementation with the NAD+ precursor, nicotinamide mononucleotide (NMN), in the treatment of allergic asthma and to investigate the role of SIRT3 in mediating the effects of NAD+ precursors. In this research, NMN alleviated airway inflammation and reduced mucus secretion in house dust mite (HDM)-induced asthmatic mice. It also mitigated airway epithelial barrier disruption in HDM-induced asthma in vitro and in vivo. But inhibition of SIRT3 expression abolished the effects of NMN. Mechanistically, HDM induced SIRT3 SUMOylation and proteasomal degradation. Mutation of these two SIRT3 SUMO modification sites enhanced the stability of SIRT3. Additionally, SIRT3 was targeted by SENP1 which acted to de-conjugate SUMO. And down-regulation of SENP1 expression in HDM-induced models was reversed by NMN. Collectively, these findings suggest that NMN attenuates airway epithelial barrier dysfunction via inhibiting SIRT3 SUMOylation in asthma. Blockage of SIRT3 SUMOylation emerges as for the treatment of allergic asthma.


Assuntos
Asma , Sirtuína 3 , Camundongos , Animais , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sumoilação , Pyroglyphidae
13.
Behav Brain Res ; 458: 114738, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-37931707

RESUMO

Postoperative cognitive dysfunction (POCD) is characterized by impaired cognitive function following general anesthesia and surgery. Oxidative stress is a significant pathophysiological manifestation underlying POCD. Previous studies have reported that the decline of nicotinamide adenine dinucleotide (NAD+) -dependent sirtuin 1 (SIRT1) contributes to the activation of oxidative stress. In this study, we investigated whether pretreatment of nicotinamide mononucleotide (NMN), an NAD+ intermediate, improves oxidative stress and cognitive function in POCD. The animal model of POCD was established in C57BL/6 J mice through 6 h isoflurane anesthesia-induced cognitive impairment. Mice were intraperitoneally injected with NMN for 7 days prior to anesthesia, after which oxidative stress and cognitive function were assessed. The level of oxidative stress was determined using flow cytometry analysis and assey kits. The fear condition test and the Y-maze test were utilized to evaluate contextual and spatial memory. Our results showed that cognitive impairment and increased oxidative stress were observed in POCD mice, as well as downregulation of NAD+ levels and related protein expressions of SIRT1 and nicotinamide phosphoribosyltransferase (NAMPT) in the hippocampus. And NMN supplementation could effectively prevent the decline of NAD+ and related proteins, and reduce oxidative stress and cognitive disorders after POCD. Mechanistically, the findings suggested that protection on cognitive function mediated by NMN pretreatment in POCD mice may be regulated by NAD+-SIRT1 signaling pathway. This study indicated that NMN preconditioning reduced oxidative stress damage and alleviated cognitive impairment in POCD mice.


Assuntos
Anestesia , Disfunção Cognitiva , Isoflurano , Camundongos , Animais , Mononucleotídeo de Nicotinamida/farmacologia , Mononucleotídeo de Nicotinamida/metabolismo , NAD , Sirtuína 1/metabolismo , Camundongos Endogâmicos C57BL , Disfunção Cognitiva/induzido quimicamente
14.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958650

RESUMO

Maintaining normal functions of ovarian granulosa cells (GCs) is essential for oocyte development and maturation. The dysfunction of GCs impairs nutrition supply and estrogen secretion by follicles, thus negatively affecting the breeding capacity of farm animals. Impaired GCs is generally associated with declines in Nicotinamide adenine dinucleotide (NAD+) levels, which triggers un-controlled oxidative stress, and the oxidative stress, thus, attack the subcellular structures and cause cell damage. ß-nicotinamide mononucleotide (NMN), a NAD+ precursor, has demonstrated well-known antioxidant properties in several studies. In this study, using two types of ovarian GCs (mouse GCs (mGCs) and human granulosa cell line (KGN)) as cell models, we aimed to investigate the potential effects of NMN on gene expression patterns and antioxidant capacity of both mGCs and KGN that were exposed to hydrogen peroxide (H2O2). As shown in results of the study, mGCs that were exposed to H2O2 significantly altered the gene expression patterns, with 428 differentially expressed genes (DEGs) when compared with those of the control group. Furthermore, adding NMN to H2O2-cultured mGCs displayed 621 DEGs. The functional enrichment analysis revealed that DEGs were mainly enriched in key pathways like cell cycle, senescence, and cell death. Using RT-qPCR, CCK8, and ß-galactosidase staining, we found that H2O2 exposure on mGCs obviously reduced cell activity/mRNA expressions of antioxidant genes, inhibited cell proliferation, and induced cellular senescence. Notably, NMN supplementation partially prevented these H2O2-induced abnormalities. Moreover, these similar beneficial effects of NMN on antioxidant capacity were confirmed in the KGN cell models that were exposed to H2O2. Taken together, the present results demonstrate that NMN supplementation protects against H2O2-induced impairments in gene expression pattern, cell cycle arrest, and cell death in ovarian GCs through boosting NAD+ levels and provide potential strategies to ameliorate uncontrolled oxidative stress in ovarian GCs.


Assuntos
Peróxido de Hidrogênio , Mononucleotídeo de Nicotinamida , Feminino , Humanos , Camundongos , Animais , Mononucleotídeo de Nicotinamida/metabolismo , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/metabolismo , NAD/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Células da Granulosa/metabolismo , Pontos de Checagem do Ciclo Celular
15.
EBioMedicine ; 98: 104877, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37980794

RESUMO

BACKGROUND: HIV-1-associated immune activation drives CD4+ T cell depletion and the development of acquired immunodeficiency syndrome. We aimed to determine the role of nicotinamide mononucleotide (NMN), the direct precursor of nicotinamide adenine dinucleotide (NAD) co-enzyme, in CD4+ T cell modulation during HIV-1 infection. METHODS: We examined HIV-1 integrated DNA or transcribed RNA, intracellular p24 protein, and T cell activation markers in CD4+ T cells including in vitro HIV-1-infected cells, reactivated patient-derived cells, and in HIV-1-infected humanized mice, under NMN treatment. RNA-seq and CyTOF analyses were used for investigating the effect of NMN on CD4+ T cells. FINDINGS: We found that NMN increased the intracellular NAD amount, resulting in suppressed HIV-1 p24 production and proliferation in infected CD4+ T cells, especially in activated CD25+CD4+ T cells. NMN also inhibited CD25 expression on reactivated resting CD4+ T cells derived from cART-treated people living with HIV-1 (PLWH). In HIV-1-infected humanized mice, the frequency of CD4+ T cells was reconstituted significantly by combined cART and NMN treatment as compared with cART or NMN alone, which correlated with suppressed hyperactivation of CD4+ T cells. INTERPRETATION: Our results highlight the suppressive role of NMN in CD4+ T cell activation during HIV-1 infection. It warrants future clinical investigation of NMN as a potential treatment in combination with cART in PLWH. FUNDING: This work was supported by the Hong Kong Research Grants Council Theme-Based Research Scheme (T11-706/18-N), University Research Committee of The University of Hong Kong, the Collaborative Research with GeneHarbor (Hong Kong) Biotechnologies Limited and National Key R&D Program of China (Grant2021YFC2301900).


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Camundongos , Humanos , Animais , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , HIV-1/metabolismo , Linfócitos T/metabolismo
16.
J Pharm Pharmacol ; 75(12): 1569-1580, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37862582

RESUMO

OBJECTIVES: This study addresses the bioavailability challenges associated with oral nicotinamide mononucleotide (NMN) administration by introducing an innovative NMN formulation incorporated with hydroxyapatite (NMN-HAP). METHODS: The NMN-HAP was developed using a wet chemical precipitation and physical adsorption method. To assess its superiority over conventional free NMN, we examined NMN, nicotinamide adenine dinucleotide (NAD+), and nicotinamide riboside (NR) levels in mouse plasma and tissues following oral administration of NMN-HAP. KEY FINDINGS: NMN-HAP nanoparticles demonstrated a rod-shaped morphology, with an average size of ~50 nm, along with encapsulation efficiency and drug loading capacity exceeding 40%. In vitro, drug release results indicated that NMN-HAP exhibited significantly lower release compared with free NMN. In vivo studies showed that NMN-HAP extended circulation time, improved bioavailability compared with free NMN, and elevated plasma levels of NMN, NAD+, and NR. Moreover, NMN-HAP administration displayed tissue-specific distribution with a substantial accumulation of NMN, NAD+, and NR in the brain and liver. CONCLUSION: NMN-HAP represents an ideal formulation for enhancing NMN bioavailability, enabling tissue-specific delivery, and ultimately elevating in vivo NAD+ levels. Considering HAP's biocompatible nature and versatile characteristics, we anticipate that this system has significant potential for various future applications.


Assuntos
NAD , Mononucleotídeo de Nicotinamida , Camundongos , Animais , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Disponibilidade Biológica , Encéfalo/metabolismo , Hidroxiapatitas
17.
Life Sci Alliance ; 6(12)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37793777

RESUMO

Myocardial mitochondria are primary sites of myocardial energy metabolism. Mitochondrial disorders are associated with various cardiac diseases. We previously showed that mice with cardiomyocyte-specific knockout of the mitochondrial translation factor p32 developed heart failure from dilated cardiomyopathy. Mitochondrial translation defects cause not only mitochondrial dysfunction but also decreased nicotinamide adenine dinucleotide (NAD+) levels, leading to impaired lysosomal acidification and autophagy. In this study, we investigated whether nicotinamide mononucleotide (NMN) administration, which compensates for decreased NAD+ levels, improves heart failure because of mitochondrial dysfunction. NMN administration reduced damaged lysosomes and improved autophagy, thereby reducing heart failure and extending the lifespan in p32cKO mice. We found that lysosomal damage due to mitochondrial dysfunction induced ferroptosis, involving the accumulation of iron in lysosomes and lipid peroxide. The ameliorative effects of NMN supplementation were found to strongly affect lysosomal function rather than mitochondrial function, particularly lysosome-mediated ferroptosis. NMN supplementation can improve lysosomal, rather than mitochondrial, function and prevent chronic heart failure.


Assuntos
Ferroptose , Insuficiência Cardíaca , Camundongos , Animais , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , NAD/metabolismo , Insuficiência Cardíaca/prevenção & controle , Mitocôndrias/metabolismo
18.
J Biol Chem ; 299(11): 105284, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37742918

RESUMO

Axonal degeneration is a hallmark feature of neurodegenerative diseases. Activation of the NAD(P)ase sterile alpha and toll-interleukin receptor motif containing protein 1 (SARM1) is critical for this process. In resting neurons, SARM1 activity is inhibited, but upon damage, SARM1 is activated and catalyzes one of three NAD(P)+ dependent reactions: (1) NAD(P)+ hydrolysis to form ADP-ribose (ADPR[P]) and nicotinamide; (2) the formation of cyclic-ADPR (cADPR[P]); or (3) a base exchange reaction with nicotinic acid (NA) and NADP+ to form NA adenine dinucleotide phosphate. Production of these metabolites triggers axonal death. Two activation mechanisms have been proposed: (1) an increase in the nicotinamide mononucleotide (NMN) concentration, which leads to the allosteric activation of SARM1, and (2) a phase transition, which stabilizes the active conformation of the enzyme. However, neither of these mechanisms have been shown to occur at the same time. Using in vitro assay systems, we show that the liquid-to-solid phase transition lowers the NMN concentration required to activate the catalytic activity of SARM1 by up to 140-fold. These results unify the proposed activation mechanisms and show for the first time that a phase transition reduces the threshold for NMN-based SARM1 activation to physiologically relevant levels. These results further our understanding of SARM1 activation and will be important for the future development of therapeutics targeting SARM1.


Assuntos
NAD , Mononucleotídeo de Nicotinamida , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , Hidrolases/metabolismo , NAD/metabolismo , Neurônios/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Humanos , Linhagem Celular
19.
Nitric Oxide ; 140-141: 1-7, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657532

RESUMO

SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), induces vascular endothelial dysfunction, but the mechanisms are unknown. We tested the hypothesis that the "circulating milieu" (plasma) of patients with COVID-19 would cause endothelial cell dysfunction (characterized by lower nitric oxide (NO) production), which would be linked to greater reactive oxygen species (ROS) bioactivity and depletion of the critical metabolic co-substrate, nicotinamide adenine dinucleotide (NAD+). We also investigated if treatment with NAD+-boosting compounds would prevent COVID-19-induced reductions in endothelial cell NO bioavailability and oxidative stress. Human aortic endothelial cells (HAECs) were exposed to plasma from men and women (age 18-85 years) who were hospitalized and tested positive (n = 34; 20 M) or negative (n = 13; 10 M) for COVID-19. HAECs exposed to plasma from patients with COVID-19 also were co-incubated with NAD+ precursors nicotinamide riboside (NR) or nicotinamide mononucleotide (NMN). Acetylcholine-stimulated NO production was 27% lower and ROS bioactivity was 54% higher in HAECs exposed to plasma from patients with COVID-19 (both p < 0.001 vs. control); these responses were independent of age and sex. NAD+ concentrations were 30% lower in HAECs exposed to plasma from patients with COVID-19 (p = 0.001 vs. control). Co-incubation with NR abolished COVID-19-induced reductions in NO production and oxidative stress (both p > 0.05 vs. control). Co-treatment with NMN produced similar results. Our findings suggest the circulating milieu of patients with COVID-19 promotes endothelial cell dysfunction, characterized by lower NO bioavailability, greater ROS bioactivity, and NAD+ depletion. Supplementation with NAD+ precursors may exert a protective effect against COVID-19-evoked endothelial cell dysfunction and oxidative stress.


Assuntos
COVID-19 , NAD , Masculino , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , NAD/metabolismo , NAD/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico/metabolismo , Células Endoteliais/metabolismo , SARS-CoV-2 , Estresse Oxidativo , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia
20.
Adv Nutr ; 14(6): 1416-1435, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37619764

RESUMO

The importance of nicotinamide adenine dinucleotide (NAD+) in human physiology is well recognized. As the NAD+ concentration in human skin, blood, liver, muscle, and brain are thought to decrease with age, finding ways to increase NAD+ status could possibly influence the aging process and associated metabolic sequelae. Nicotinamide mononucleotide (NMN) is a precursor for NAD+ biosynthesis, and in vitro/in vivo studies have demonstrated that NMN supplementation increases NAD+ concentration and could mitigate aging-related disorders such as oxidative stress, DNA damage, neurodegeneration, and inflammatory responses. The promotion of NMN as an antiaging health supplement has gained popularity due to such findings; however, since most studies evaluating the effects of NMN have been conducted in cell or animal models, a concern remains regarding the safety and physiological effects of NMN supplementation in the human population. Nonetheless, a dozen human clinical trials with NMN supplementation are currently underway. This review summarizes the current progress of these trials and NMN/NAD+ biology to clarify the potential effects of NMN supplementation and to shed light on future study directions.


Assuntos
NAD , Mononucleotídeo de Nicotinamida , Animais , Humanos , Mononucleotídeo de Nicotinamida/farmacologia , Mononucleotídeo de Nicotinamida/metabolismo , NAD/metabolismo , Estresse Oxidativo , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...